

NIST Special Publication 800-218

Secure Software Development
Framework (SSDF) Version 1.1:

Recommendations for Mitigating
the Risk of Software Vulnerabilities

Murugiah Souppaya
Karen Scarfone
Donna Dodson

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-218

NIST Special Publication 800-218

Secure Software Development
Framework (SSDF) Version 1.1:

Recommendations for Mitigating
the Risk of Software Vulnerabilities

Murugiah Souppaya
Computer Security Division

Information Technology Laboratory

Karen Scarfone
Scarfone Cybersecurity

Clifton, VA

Donna Dodson*
* Former NIST employee; all work for this publication was done while at NIST.

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-218

February 2022

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology

James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce
for Standards and Technology & Director, National Institute of Standards and Technology

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including
minimum requirements for federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate federal officials exercising policy
authority over such systems. This guideline is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the OMB, or any other federal official. This publication may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-218
Natl. Inst. Stand. Technol. Spec. Publ. 800-218, 36 pages (February 2022)

CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-218

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, federal agencies may wish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Submit comments on this publication to: ssdf@nist.gov
National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

 All comments are subject to release under the Freedom of Information Act (FOIA).

NIST SP 800-218 SSDF VERSION 1.1

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in
federal information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative activities
with industry, government, and academic organizations.

Abstract

Few software development life cycle (SDLC) models explicitly address software security in
detail, so secure software development practices usually need to be added to each SDLC model
to ensure that the software being developed is well-secured. This document recommends the
Secure Software Development Framework (SSDF) – a core set of high-level secure software
development practices that can be integrated into each SDLC implementation. Following such
practices should help software producers reduce the number of vulnerabilities in released
software, reduce the potential impact of the exploitation of undetected or unaddressed
vulnerabilities, and address the root causes of vulnerabilities to prevent future recurrences.
Because the framework provides a common vocabulary for secure software development,
software acquirers can also use it to foster communications with suppliers in acquisition
processes and other management activities.

 Keywords

secure software development; Secure Software Development Framework (SSDF); secure
software development practices; software acquisition; software development; software
development life cycle (SDLC); software security.

Trademark Information

All registered trademarks or trademarks belong to their respective organizations.

NIST SP 800-218 SSDF VERSION 1.1

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

Acknowledgments

The authors thank all of the organizations and individuals who provided input for this update to
the SSDF. In response to Section 4 of Executive Order (EO) 14028 on “Improving the Nation’s
Cybersecurity,” NIST held a June 2021 workshop and received over 150 position papers, many
of which suggested secure software development practices, tasks, examples of implementations,
and references for consideration for this SSDF update. The authors appreciate all of those
suggestions, as well as the input from those who spoke at or attended the workshop and shared
their thoughts during or after the workshop.

Additionally, the authors appreciate the public comments submitted by dozens of organizations
and individuals and wish to acknowledge the particularly helpful feedback from Amazon Web
Services, Apiiro, Blackberry, BSA | The Software Alliance, the Enterprise Cloud Coalition, the
General Services Administration (GSA), Google, IBM, Medical Imaging & Technology Alliance
(MITA), Microsoft, Oracle, the Software Assurance Forum for Excellence in Code (SAFECode),
Synopsis, the U.S. Navy, Xoomworks, and Robert Grupe. Representatives of Siemens Energy
and Synopsis contributed mappings to new references.

The authors thank all of their NIST colleagues for their support throughout the SSDF update,
especially Curt Barker, Paul Black, Jon Boyens, Jim Foti, Barbara Guttman, Mat Heyman,
Nicole Keller, Matt Scholl, Adam Sedgewick, Kevin Stine, and Isabel Van Wyk.

The authors also wish to thank all of the individuals and organizations who provided comments
on drafts of the original version of the SSDF, including the Administrative Offices of the U.S.
Courts, The Aerospace Corporation, BSA | The Software Alliance, Capitis Solutions, the
Consortium for Information & Software Quality (CISQ), HackerOne, Honeycomb Secure
Systems, iNovex, Ishpi Information Technologies, the Information Security and Privacy
Advisory Board (ISPAB), Juniper Networks, Microsoft, MITA, Naval Sea Systems Command
(NAVSEA), NIST, Northrop Grumman, the Office of the Undersecretary of Defense for
Research and Engineering, Red Hat, SAFECode, and the Software Engineering Institute (SEI).

Audience

There are two primary audiences for this document. The first is software producers (e.g.,
commercial-off-the-shelf [COTS] product vendors, government-off-the-shelf [GOTS] software
developers, custom software developers, internal development teams) regardless of size, sector,
or level of maturity. The second is software acquirers – both federal agencies and other
organizations. Readers of this document are not expected to be experts in secure software
development in order to understand it, but such expertise is required to implement its
recommended practices.

Personnel within the following Workforce Categories and Specialty Areas from the National
Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce Framework [SP800181]
are most likely to find this publication of interest:

NIST SP 800-218 SSDF VERSION 1.1

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

• Securely Provision (SP): Risk Management (RSK), Software Development (DEV),
Systems Requirements Planning (SRP), Test and Evaluation (TST), Systems
Development (SYS)

• Operate and Maintain (OM): Systems Analysis (ANA)

• Oversee and Govern (OV): Training, Education, and Awareness (TEA); Cybersecurity
Management (MGT); Executive Cyber Leadership (EXL); Program/Project Management
(PMA) and Acquisition

• Protect and Defend (PR): Incident Response (CIR), Vulnerability Assessment and
Management (VAM)

• Analyze (AN): Threat Analysis (TWA), Exploitation Analysis (EXP)

Note to Readers

We encourage you to provide feedback on the SSDF at any time, especially as you implement
the SSDF within your own organization and software development efforts. Having inputs from a
variety of software producers will be particularly helpful to us in refining and revising the SSDF.
The publication will be updated periodically to reflect your inputs and feedback.

If you are from a standards-developing organization or another organization that has produced a
set of secure practices and you would like to map your secure software development standard or
guidance to the SSDF, please contact us at ssdf@nist.gov. We would like to introduce you to the
National Online Informative References Program (OLIR) so that you can submit your mapping
there to augment the existing set of informative references.

NIST SP 800-218 SSDF VERSION 1.1

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

Patent Disclosure Notice

NOTICE: The Information Technology Laboratory (ITL) has requested that holders of patent claims
whose use may be required for compliance with the guidance or requirements of this publication
disclose such patent claims to ITL. However, holders of patents are not obligated to respond to ITL
calls for patents and ITL has not undertaken a patent search in order to identify which, if any,
patents may apply to this publication.

As of the date of publication and following call(s) for the identification of patent claims whose use
may be required for compliance with the guidance or requirements of this publication, no such
patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NIST SP 800-218 SSDF VERSION 1.1

vi

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

Executive Summary

This document describes a set of fundamental, sound practices for secure software development
called the Secure Software Development Framework (SSDF). Organizations should integrate the
SSDF throughout their existing software development practices, express their secure software
development requirements to third-party suppliers using SSDF conventions, and acquire
software that meets the practices described in the SSDF. Using the SSDF helps organizations to
meet the following secure software development recommendations:

• Organizations should ensure that their people, processes, and technology are prepared to
perform secure software development.

• Organizations should protect all components of their software from tampering and
unauthorized access.

• Organizations should produce well-secured software with minimal security
vulnerabilities in its releases.

• Organizations should identify residual vulnerabilities in their software releases and
respond appropriately to address those vulnerabilities and prevent similar ones from
occurring in the future.

The SSDF does not prescribe how to implement each practice. The focus is on the outcomes of
the practices rather than on the tools, techniques, and mechanisms to do so. This means that the
SSDF can be used by organizations in any sector or community, regardless of size or
cybersecurity sophistication. It can also be used for any type of software development, regardless
of technology, platform, programming language, or operating environment.

The SSDF defines only a high-level subset of what organizations may need to do, so
organizations should consult the references and other resources for additional information on
implementing the practices. Not all practices are applicable to all use cases; organizations should
adopt a risk-based approach to determine what practices are relevant, appropriate, and effective
to mitigate the threats to their software development practices.

Organizations can communicate how they are addressing the clauses from Section 4 of the
President’s Executive Order (EO) on “Improving the Nation’s Cybersecurity (14028)” by
referencing the SSDF practices and tasks described in Appendix A.

NIST SP 800-218 SSDF VERSION 1.1

vii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

Table of Contents
Executive Summary ... vi
1 Introduction .. 1

2 The Secure Software Development Framework .. 4

References ... 20

 The SSDF and Executive Order 14028 .. 24

 Acronyms .. 25

 Change Log ... 27

List of Tables

Table 1: The Secure Software Development Framework (SSDF) Version 1.1 5

Table 2: SSDF Practices Corresponding to EO 14028 Clauses 24

NIST SP 800-218 SSDF VERSION 1.1

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

1 Introduction

A software development life cycle (SDLC)1 is a formal or informal methodology for designing,
creating, and maintaining software (including code built into hardware). There are many models
for SDLCs, including waterfall, spiral, agile, and – in particular – agile combined with software
development and IT operations (DevOps) practices. Few SDLC models explicitly address
software security in detail, so secure software development practices usually need to be added to
and integrated into each SDLC model. Regardless of which SDLC model is used, secure
software development practices should be integrated throughout it for three reasons: to reduce
the number of vulnerabilities in released software, to reduce the potential impact of the
exploitation of undetected or unaddressed vulnerabilities, and to address the root causes of
vulnerabilities to prevent recurrences. Vulnerabilities include not just bugs caused by coding
flaws, but also weaknesses caused by security configuration settings, incorrect trust assumptions,
and outdated risk analysis. [IR7864]

Most aspects of security can be addressed multiple times within an SDLC, but in general, the
earlier in the SDLC that security is addressed, the less effort and cost is ultimately required to
achieve the same level of security. This principle, known as shifting left, is critically important
regardless of the SDLC model. Shifting left minimizes any technical debt that would require
remediating early security flaws late in development or after the software is in production.
Shifting left can also result in software with stronger security and resiliency.

There are many existing documents on secure software development practices, including those
listed in the References section. This document does not introduce new practices or define new
terminology. Instead, it describes a set of high-level practices based on established standards,
guidance, and secure software development practice documents. These practices, collectively
called the Secure Software Development Framework (SSDF), are intended to help the target
audiences achieve secure software development objectives. Many of the practices directly
involve the software itself, while others indirectly involve it (e.g., securing the development
environment).

Future work may expand on this publication and potentially cover topics such as how the SSDF
may apply to and vary for particular software development methodologies and associated
practices like DevOps, how an organization can transition from their current software
development practices to also incorporating the SSDF practices, and how the SSDF could be
applied in the context of open-source software. Future work will likely take the form of use cases
so that the insights will be more readily applicable to specific types of development
environments, and it will likely include collaboration with the open-source community and other
groups and organizations.

This document identifies secure software development practices but does not prescribe how to
implement them. The focus is on the outcomes of the practices to be implemented rather than on

1 Note that SDLC is also widely used for “system development life cycle.” All usage of “SDLC” in this document is
referencing software, not systems.

NIST SP 800-218 SSDF VERSION 1.1

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

the tools, techniques, and mechanisms used to do so. Advantages of specifying the practices at a
high level include the following:

• Can be used by organizations in any sector or community, regardless of size or
cybersecurity sophistication

• Can be applied to software developed to support information technology (IT), industrial
control systems (ICS), cyber-physical systems (CPS), or the Internet of Things (IoT)

• Can be integrated into any existing software development workflow and automated
toolchain; should not negatively affect organizations that already have robust secure
software development practices in place

• Makes the practices broadly applicable, not specific to particular technologies, platforms,
programming languages, SDLC models, development environments, operating
environments, tools, etc.

• Can help an organization document its secure software development practices today and
define its future target practices as part of its continuous improvement process

• Can assist an organization currently using a classic software development model in
transitioning its secure software development practices for use with a modern software
development model (e.g., agile, DevOps)

• Can assist organizations that are procuring and using software to understand secure
software development practices employed by their suppliers

This document provides a common language to describe fundamental secure software
development practices. This is similar to the approach taken by the Framework for Improving
Critical Infrastructure Cybersecurity, also known as the NIST Cybersecurity Framework
[NISTCSF].2 Expertise in secure software development is not required to understand the
practices. The common language helps facilitate communications about secure software practices
among both internal and external organizational stakeholders, such as:

• Business owners, software developers, project managers and leads, cybersecurity
professionals, and operations and platform engineers within an organization who need to
clearly communicate with each other about secure software development

• Software acquirers, including federal agencies and other organizations, that want to
define required or desired characteristics for software in their acquisition processes in
order to have higher-quality software (particularly with fewer significant security
vulnerabilities)3

2 The SSDF practices may help support the NIST Cybersecurity Framework Functions, Categories, and Subcategories, but the
SSDF practices do not map to them and are typically the responsibility of different parties. Developers can adopt SSDF
practices, and the outcomes of their work could help organizations with their operational security in support of the
Cybersecurity Framework.

3 Future work may provide more practical guidance for software acquirers on how they can leverage the SSDF in specific use
cases.

NIST SP 800-218 SSDF VERSION 1.1

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

• Software producers (e.g., commercial-off-the-shelf [COTS] product vendors,
government-off-the-shelf [GOTS] software developers, software developers working
within or on behalf of software acquirer organizations) that want to integrate secure
software development practices throughout their SDLCs, express their secure software
practices to their customers, or define requirements for their suppliers

This document’s practices are not based on the assumption that all organizations have the same
security objectives and priorities. Rather, the recommendations reflect that each software
producer may have unique security assumptions, and each software acquirer may have unique
security needs and requirements. While the aim is for each software producer to follow all
applicable practices, the expectation is that the degree to which each practice is implemented and
the formality of the implementation will vary based on the producer’s security assumptions. The
practices provide flexibility for implementers, but they are also clear to avoid leaving too much
open to interpretation.

Although most of these practices are relevant to any software development effort, some are not.
For example, if developing a particular piece of software does not involve using a compiler,
there would be no need to follow a practice on configuring the compiler to improve executable
security. Some practices are foundational, while others are more advanced and depend on certain
foundational practices already being in place. Also, practices are not all equally important for all
cases.

Factors such as risk, cost, feasibility, and applicability should be considered when deciding
which practices to use and how much time and resources to devote to each practice.4
Automatability is also an important factor to consider, especially for implementing practices at
scale. The practices, tasks, and implementation examples represent a starting point to consider;
they are meant to be changed and customized, and they are not prioritized. Any stated frequency
for performing practices is notional. The intention of the SSDF is not to create a checklist to
follow, but to provide a basis for planning and implementing a risk-based approach to adopting
secure software development practices.

The responsibility for implementing the practices may be distributed among different
organizations based on the delivery of the software and services (e.g., infrastructure as a service,
software as a service, platform as a service, container as a service, serverless). In these situations,
it likely follows a shared responsibility model involving the platform/service providers and the
tenant organization that is consuming those platforms/services. The tenant organization should
establish an agreement with the providers that specifies which party is responsible for each
practice and task and how each provider will attest to their conformance with the agreement.

4 Organizations seeking guidance on how to get started with secure software development can consult many publicly available
references, such as “SDL That Won’t Break the Bank” by Steve Lipner from SAFECode (https://i.blackhat.com/us-18/Thu-
August-9/us-18-Lipner-SDL-For-The-Rest-Of-Us.pdf), “Application Software Security and the CIS Controls: A Reference
Paper” by Steve Lipner and Stacy Simpson from SAFECode (https://safecode.org/resource-publications/cis-controls/), and
“Simplified Implementation of the Microsoft SDL” by Microsoft (https://www.microsoft.com/en-
us/download/details.aspx?id=12379).

NIST SP 800-218 SSDF VERSION 1.1

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

2 The Secure Software Development Framework

This document defines version 1.1 of the Secure Software Development Framework (SSDF)
with fundamental, sound, and secure recommended practices based on established secure
software development practice documents. The practices are organized into four groups:

1. Prepare the Organization (PO): Organizations should ensure that their people,
processes, and technology are prepared to perform secure software development at the
organization level. Many organizations will find some PO practices to also be applicable
to subsets of their software development, like individual development groups or projects.

2. Protect the Software (PS): Organizations should protect all components of their
software from tampering and unauthorized access.

3. Produce Well-Secured Software (PW): Organizations should produce well-secured
software with minimal security vulnerabilities in its releases.

4. Respond to Vulnerabilities (RV): Organizations should identify residual vulnerabilities
in their software releases and respond appropriately to address those vulnerabilities and
prevent similar ones from occurring in the future.

Each practice definition includes the following elements:

• Practice: The name of the practice and a unique identifier, followed by a brief
explanation of what the practice is and why it is beneficial

• Tasks: One or more actions that may be needed to perform a practice

• Notional Implementation Examples: One or more notional examples of types of tools,
processes, or other methods that could be used to help implement a task. No examples or
combination of examples are required, and the stated examples are not the only feasible
options. Some examples may not be applicable to certain organizations and situations.

• References: Pointers to one or more established secure development practice documents
and their mappings to a particular task. Not all references will apply to all instances of
software development.

Table 1 defines the practices. They are only a subset of what an organization may need to do.
The information in the table is space constrained; much more information on each practice can
be found in the references. Note that the order of the practices, tasks, and notional
implementation examples in the table is not intended to imply the sequence of implementation or
the relative importance of any practice, task, or example.

The table uses terms like “sensitive data,” “qualified person,” and “well-secured,” which are not
defined in this publication. Organizations adopting the SSDF should define these terms in the
context of their own environments and use cases. The same is true for the names of
environments, like “development,” “build,” “staging,” “integration,” “test,” “production,” and
“distribution,” which vary widely among organizations and projects. Enumerating your
environments is necessary in order to secure them properly, and especially to prevent lateral
movement of attackers from environment to environment.

NIST SP 800-218 SSDF VERSION 1.1

5

Table 1: The Secure Software Development Framework (SSDF) Version 1.1

Practices Tasks Notional Implementation Examples References
Prepare the Organization (PO)
Define Security Requirements for Software
Development (PO.1): Ensure that security
requirements for software development are
known at all times so that they can be taken into
account throughout the SDLC and duplication of
effort can be minimized because the
requirements information can be collected once
and shared. This includes requirements from
internal sources (e.g., the organization’s policies,
business objectives, and risk management
strategy) and external sources (e.g., applicable
laws and regulations).

PO.1.1: Identify and document all security
requirements for the organization’s software
development infrastructures and processes, and
maintain the requirements over time.

Example 1: Define policies for securing software development infrastructures and
their components, including development endpoints, throughout the SDLC and
maintaining that security.
Example 2: Define policies for securing software development processes
throughout the SDLC and maintaining that security, including for open-source and
other third-party software components utilized by software being developed.
Example 3: Review and update security requirements at least annually, or sooner
if there are new requirements from internal or external sources, or a major
security incident targeting software development infrastructure has occurred.
Example 4: Educate affected individuals on impending changes to requirements.

BSAFSS: SM.3, DE.1, IA.1, IA.2
BSIMM: CP1.1, CP1.3, SR1.1, SR2.2, SE1.2, SE2.6
EO14028: 4e(ix)
IEC62443: SM-7, SM-9
NISTCSF: ID.GV-3
OWASPASVS: 1.1.1
OWASPMASVS: 1.10
OWASPSAMM: PC1-A, PC1-B, PC2-A
PCISSLC: 2.1, 2.2
SCFPSSD: Planning the Implementation and Deployment of Secure Development Practices
SP80053: SA-1, SA-8, SA-15, SR-3
SP800160: 3.1.2, 3.2.1, 3.2.2, 3.3.1, 3.4.2, 3.4.3
SP800161: SA-1, SA-8, SA-15, SR-3
SP800181: T0414; K0003, K0039, K0044, K0157, K0168, K0177, K0211, K0260, K0261,
K0262, K0524; S0010, S0357, S0368; A0033, A0123, A0151

PO.1.2: Identify and document all security
requirements for organization-developed software to
meet, and maintain the requirements over time.

Example 1: Define policies that specify risk-based software architecture and
design requirements, such as making code modular to facilitate code reuse and
updates; isolating security components from other components during execution;
avoiding undocumented commands and settings; and providing features that will
aid software acquirers with the secure deployment, operation, and maintenance
of the software.
Example 2: Define policies that specify the security requirements for the
organization’s software, and verify compliance at key points in the SDLC (e.g.,
classes of software flaws verified by gates, responses to vulnerabilities
discovered in released software).
Example 3: Analyze the risk of applicable technology stacks (e.g., languages,
environments, deployment models), and recommend or require the use of stacks
that will reduce risk compared to others.
Example 4: Define policies that specify what needs to be archived for each
software release (e.g., code, package files, third-party libraries, documentation,
data inventory) and how long it needs to be retained based on the SDLC model,
software end-of-life, and other factors.
Example 5: Ensure that policies cover the entire software life cycle, including
notifying users of the impending end of software support and the date of software
end-of-life.
Example 6: Review all security requirements at least annually, or sooner if there
are new requirements from internal or external sources, a major vulnerability is
discovered in released software, or a major security incident targeting
organization-developed software has occurred.
Example 7: Establish and follow processes for handling requirement exception
requests, including periodic reviews of all approved exceptions.

BSAFSS: SC.1-1, SC.2, PD.1-1, PD.1-2, PD.1-3, PD.2-2, SI, PA, CS, AA, LO, EE
BSIMM: SM1.1, SM1.4, SM2.2, CP1.1, CP1.2, CP1.3, CP2.1, CP2.3, AM1.2, SFD1.1,
SFD2.1, SFD3.2, SR1.1, SR1.3, SR2.2, SR3.3, SR3.4
EO14028: 4e(ix)
IEC62443: SR-3, SR-4, SR-5, SD-4
ISO27034: 7.3.2
MSSDL: 2, 5
NISTCSF: ID.GV-3
OWASPMASVS: 1.12
OWASPSAMM: PC1-A, PC1-B, PC2-A, PC3-A, SR1-A, SR1-B, SR2-B, SA1-B, IR1-A
PCISSLC: 2.1, 2.2, 2.3, 3.3
SCFPSSD: Establish Coding Standards and Conventions
SP80053: SA-8, SA-8(3), SA-15, SR-3
SP800160: 3.1.2, 3.2.1, 3.3.1
SP800161: SA-8, SA-15, SR-3
SP800181: T0414; K0003, K0039, K0044, K0157, K0168, K0177, K0211, K0260, K0261,
K0262, K0524; S0010, S0357, S0368; A0033, A0123, A0151

PO.1.3: Communicate requirements to all third parties
who will provide commercial software components to
the organization for reuse by the organization’s own
software. [Formerly PW.3.1]

Example 1: Define a core set of security requirements for software components,
and include it in acquisition documents, software contracts, and other agreements
with third parties.
Example 2: Define security-related criteria for selecting software; the criteria can
include the third party’s vulnerability disclosure program and product security
incident response capabilities or the third party’s adherence to organization-
defined practices.
Example 3: Require third parties to attest that their software complies with the
organization’s security requirements.

BSAFSS: SM.1, SM.2, SM.2-1, SM.2-4
BSIMM: CP2.4, CP3.2, SR2.5, SR3.2
EO14028: 4e(vi), 4e(ix)
IDASOAR: 19, 21
IEC62443: SM-9, SM-10
MSSDL: 7
NISTCSF: ID.SC-3
OWASPSAMM: SR3-A

NIST SP 800-218 SSDF VERSION 1.1

6

Practices Tasks Notional Implementation Examples References
Example 4: Require third parties to provide provenance5 data and integrity
verification mechanisms for all components of their software.
Example 5: Establish and follow processes to address risk when there are
security requirements that third-party software components to be acquired do not
meet; this should include periodic reviews of all approved exceptions to
requirements.

SCAGILE: Tasks Requiring the Help of Security Experts 8
SCFPSSD: Manage Security Risk Inherent in the Use of Third-Party Components
SCSIC: Vendor Sourcing Integrity Controls
SP80053: SA-4, SA-9, SA-10, SA-10(1), SA-15, SR-3, SR-4, SR-5
SP800160: 3.1.1, 3.1.2
SP800161: SA-4, SA-9, SA-9(1), SA-9(3), SA-10, SA-10(1), SA-15, SR-3, SR-4, SR-5
SP800181: T0203, T0415; K0039; S0374; A0056, A0161

Implement Roles and Responsibilities (PO.2):
Ensure that everyone inside and outside of the
organization involved in the SDLC is prepared to
perform their SDLC-related roles and
responsibilities throughout the SDLC.

PO.2.1: Create new roles and alter responsibilities for
existing roles as needed to encompass all parts of the
SDLC. Periodically review and maintain the defined
roles and responsibilities, updating them as needed.

Example 1: Define SDLC-related roles and responsibilities for all members of the
software development team.
Example 2: Integrate the security roles into the software development team.
Example 3: Define roles and responsibilities for cybersecurity staff, security
champions, project managers and leads, senior management, software
developers, software testers, software assurance leads and staff, product owners,
operations and platform engineers, and others involved in the SDLC.
Example 4: Conduct an annual review of all roles and responsibilities.
Example 5: Educate affected individuals on impending changes to roles and
responsibilities, and confirm that the individuals understand the changes and
agree to follow them.
Example 6: Implement and use tools and processes to promote communication
and engagement among individuals with SDLC-related roles and responsibilities,
such as creating messaging channels for team discussions.
Example 7: Designate a group of individuals or a team as the code owner for
each project.

BSAFSS: PD.2-1, PD.2-2
BSIMM: SM1.1, SM2.3, SM2.7, CR1.7
EO14028: 4e(ix)
IEC62443: SM-2, SM-13
NISTCSF: ID.AM-6, ID.GV-2
PCISSLC: 1.2
SCSIC: Vendor Software Development Integrity Controls
SP80053: SA-3
SP800160: 3.2.1, 3.2.4, 3.3.1
SP800161: SA-3
SP800181: K0233

PO.2.2: Provide role-based training for all personnel
with responsibilities that contribute to secure
development. Periodically review personnel proficiency
and role-based training, and update the training as
needed.

Example 1: Document the desired outcomes of training for each role.
Example 2: Define the type of training or curriculum required to achieve the
desired outcome for each role.
Example 3: Create a training plan for each role.
Example 4: Acquire or create training for each role; acquired training may need
to be customized for the organization.
Example 5: Measure outcome performance to identify areas where changes to
training may be beneficial.

BSAFSS: PD.2-2
BSIMM: T1.1, T1.7, T1.8, T2.5, T2.8, T2.9, T3.1, T3.2, T3.4
EO14028: 4e(ix)
IEC62443: SM-4
MSSDL: 1
NISTCSF: PR.AT
OWASPSAMM: EG1-A, EG2-A
PCISSLC: 1.3
SCAGILE: Operational Security Tasks 14, 15; Tasks Requiring the Help of Security Experts
1
SCFPSSD: Planning the Implementation and Deployment of Secure Development Practices
SCSIC: Vendor Software Development Integrity Controls
SP80053: SA-8
SP800160: 3.2.4, 3.2.6
SP800161: SA-8
SP800181: OV-TEA-001, OV-TEA-002; T0030, T0073, T0320; K0204, K0208, K0220,
K0226, K0243, K0245, K0252; S0100, S0101; A0004, A0057

5 Provenance is “the chronology of the origin, development, ownership, location, and changes to a system or system component and associated data. It may also include personnel and processes used to interact with or make modifications to the system, component, or associated data” [SP80053].

NIST SP 800-218 SSDF VERSION 1.1

7

Practices Tasks Notional Implementation Examples References
PO.2.3: Obtain upper management or authorizing
official commitment to secure development, and
convey that commitment to all with development-
related roles and responsibilities.

Example 1: Appoint a single leader or leadership team to be responsible for the
entire secure software development process, including being accountable for
releasing software to production and delegating responsibilities as appropriate.
Example 2: Increase authorizing officials’ awareness of the risks of developing
software without integrating security throughout the development life cycle and
the risk mitigation provided by secure development practices.
Example 3: Assist upper management in incorporating secure development
support into their communications with personnel with development-related roles
and responsibilities.
Example 4: Educate all personnel with development-related roles and
responsibilities on upper management’s commitment to secure development and
the importance of secure development to the organization.

BSIMM: SM1.3, SM2.7, CP2.5
EO14028: 4e(ix)
NISTCSF: ID.RM-1, ID.SC-1
OWASPSAMM: SM1.A
PCISSLC: 1.1
SP800181: T0001, T0004

Implement Supporting Toolchains (PO.3):
Use automation to reduce human effort and
improve the accuracy, reproducibility, usability,
and comprehensiveness of security practices
throughout the SDLC, as well as provide a way
to document and demonstrate the use of these
practices. Toolchains and tools may be used at
different levels of the organization, such as
organization-wide or project-specific, and may
address a particular part of the SDLC, like a
build pipeline.

PO.3.1: Specify which tools or tool types must or
should be included in each toolchain to mitigate
identified risks, as well as how the toolchain
components are to be integrated with each other.

Example 1: Define categories of toolchains, and specify the mandatory tools or
tool types to be used for each category.
Example 2: Identify security tools to integrate into the developer toolchain.
Example 3: Define what information is to be passed between tools and what data
formats are to be used.
Example 4: Evaluate tools’ signing capabilities to create immutable records/logs
for auditability within the toolchain.
Example 5: Use automated technology for toolchain management and
orchestration.

BSIMM: CR1.4, ST1.4, ST2.5, SE2.7
CNCFSSCP: Securing Materials—Verification; Securing Build Pipelines—Verification,
Automation, Secure Authentication/Access; Securing Artefacts—Verification; Securing
Deployments—Verification
EO14028: 4e(iii), 4e(ix)
MSSDL: 8
OWASPSAMM: IR2-B, ST2-B
SCAGILE: Tasks Requiring the Help of Security Experts 9
SCSIC: Vendor Software Delivery Integrity Controls
SP80053: SA-15
SP800161: SA-15
SP800181: K0013, K0178

PO.3.2: Follow recommended security practices to
deploy, operate, and maintain tools and toolchains.

Example 1: Evaluate, select, and acquire tools, and assess the security of each
tool.
Example 2: Integrate tools with other tools and existing software development
processes and workflows.
Example 3: Use code-based configuration for toolchains (e.g., pipelines-as-code,
toolchains-as-code).
Example 4: Implement the technologies and processes needed for reproducible
builds.
Example 5: Update, upgrade, or replace tools as needed to address tool
vulnerabilities or add new tool capabilities.
Example 6: Continuously monitor tools and tool logs for potential operational and
security issues, including policy violations and anomalous behavior.
Example 7: Regularly verify the integrity and check the provenance of each tool
to identify potential problems.
Example 8: See PW.6 regarding compiler, interpreter, and build tools.
Example 9: See PO.5 regarding implementing and maintaining secure
environments.

BSAFSS: DE.2
BSIMM: SR1.1, SR1.3, SR3.4
CNCFSSCP: Securing Build Pipelines—Verification, Automation, Controlled Environments,
Secure Authentication/Access; Securing Artefacts—Verification, Automation, Controlled
Environments, Encryption; Securing Deployments—Verification, Automation
EO14028: 4e(i)(F), 4e(ii), 4e(iii), 4e(v), 4e(vi), 4e(ix)
IEC62443: SM-7
IR8397: 2.2
OWASPASVS: 1.14.3, 1.14.4, 14.1, 14.2
OWASPMASVS: 7.9
OWASPSCVS: 3, 5
SCAGILE: Tasks Requiring the Help of Security Experts 9
SCFPSSD: Use Current Compiler and Toolchain Versions and Secure Compiler Options
SCSIC: Vendor Software Delivery Integrity Controls
SP80053: SA-15
SP800161: SA-15
SP800181: K0013, K0178

PO.3.3: Configure tools to generate artifacts6 of their
support of secure software development practices as
defined by the organization.

Example 1: Use existing tooling (e.g., workflow tracking, issue tracking, value
stream mapping) to create an audit trail of the secure development-related
actions that are performed for continuous improvement purposes.
Example 2: Determine how often the collected information should be audited,
and implement the necessary processes.
Example 3: Establish and enforce security and retention policies for artifact data.
Example 4: Assign responsibility for creating any needed artifacts that tools

BSAFSS: PD.1-5
BSIMM: SM1.4, SM3.4, SR1.3
CNCFSSCP: Securing Build Pipelines—Verification, Automation, Controlled Environments;
Securing Artefacts—Verification
EO14028: 4e(i)(F), 4e(ii), 4e(v), 4e(ix)
IEC62443: SM-12, SI-2
MSSDL: 8

6 An artifact is “a piece of evidence” [adapted from IR7692]. Evidence is “grounds for belief or disbelief; data on which to base proof or to establish truth or falsehood” [SP800160]. Artifacts provide records of secure software development practices.

NIST SP 800-218 SSDF VERSION 1.1

8

Practices Tasks Notional Implementation Examples References
cannot generate. OWASPSAMM: PC3-B

OWASPSCVS: 3.13, 3.14
PCISSLC: 2.5
SCAGILE: Tasks Requiring the Help of Security Experts 9
SCSIC: Vendor Software Delivery Integrity Controls
SP80053: SA-15
SP800161: SA-15
SP800181: K0013; T0024

Define and Use Criteria for Software Security
Checks (PO.4): Help ensure that the software
resulting from the SDLC meets the
organization’s expectations by defining and
using criteria for checking the software’s security
during development.

PO.4.1: Define criteria for software security checks
and track throughout the SDLC.

Example 1: Ensure that the criteria adequately indicate how effectively security
risk is being managed.
Example 2: Define key performance indicators (KPIs), key risk indicators (KRIs),
vulnerability severity scores, and other measures for software security.
Example 3: Add software security criteria to existing checks (e.g., the Definition
of Done in agile SDLC methodologies).
Example 4: Review the artifacts generated as part of the software development
workflow system to determine if they meet the criteria.
Example 5: Record security check approvals, rejections, and exception requests
as part of the workflow and tracking system.
Example 6: Analyze collected data in the context of the security successes and
failures of each development project, and use the results to improve the SDLC.

BSAFSS: TV.2-1, TV.5-1
BSIMM: SM1.4, SM2.1, SM2.2, SM2.6, SM3.3, CP2.2
EO14028: 4e(iv), 4e(v), 4e(ix)
IEC62443: SI-1, SI-2, SVV-3
ISO27034: 7.3.5
MSSDL: 3
OWASPSAMM: PC3-A, DR3-B, IR3-B, ST3-B
PCISSLC: 3.3
SP80053: SA-15, SA-15(1)
SP800160: 3.2.1, 3.2.5, 3.3.1
SP800161: SA-15, SA-15(1)
SP800181: K0153, K0165

PO.4.2: Implement processes, mechanisms, etc. to
gather and safeguard the necessary information in
support of the criteria.

Example 1: Use the toolchain to automatically gather information that informs
security decision-making.
Example 2: Deploy additional tools if needed to support the generation and
collection of information supporting the criteria.
Example 3: Automate decision-making processes utilizing the criteria, and
periodically review these processes.
Example 4: Only allow authorized personnel to access the gathered information,
and prevent any alteration or deletion of the information.

BSAFSS: PD.1-4, PD.1-5
BSIMM: SM1.4, SM2.1, SM2.2, SM3.4
EO14028: 4e(iv), 4e(v), 4e(ix)
IEC62443: SI-1, SVV-1, SVV-2, SVV-3, SVV-4
OWASPSAMM: PC3-B
PCISSLC: 2.5
SCSIC: Vendor Software Delivery Integrity Controls
SP80053: SA-15, SA-15(1), SA-15(11)
SP800160: 3.2.5, 3.3.7
SP800161: SA-15, SA-15(1), SA-15(11)
SP800181: T0349; K0153

Implement and Maintain Secure
Environments for Software Development
(PO.5): Ensure that all components of the
environments for software development are
strongly protected from internal and external
threats to prevent compromises of the
environments or the software being developed
or maintained within them. Examples of
environments for software development include
development, build, test, and distribution
environments.

PO.5.1: Separate and protect each environment
involved in software development.

Example 1: Use multi-factor, risk-based authentication and conditional access for
each environment.
Example 2: Use network segmentation and access controls to separate the
environments from each other and from production environments, and to
separate components from each other within each non-production environment,
in order to reduce attack surfaces and attackers’ lateral movement and
privilege/access escalation.
Example 3: Enforce authentication and tightly restrict connections entering and
exiting each software development environment, including minimizing access to
the internet to only what is necessary.
Example 4: Minimize direct human access to toolchain systems, such as build
services. Continuously monitor and audit all access attempts and all use of
privileged access.
Example 5: Minimize the use of production-environment software and services
from non-production environments.
Example 6: Regularly log, monitor, and audit trust relationships for authorization
and access between the environments and between the components within each
environment.
Example 7: Continuously log and monitor operations and alerts across all
components of the development environment to detect, respond, and recover

BSAFSS: DE.1, IA.1, IA.2
CNCFSSCP: Securing Build Pipelines—Controlled Environments
EO14028: 4e(i)(A), 4e(i)(B), 4e(i)(C), 4e(i)(D), 4e(i)(F), 4e(ii), 4e(iii), 4e(v), 4e(vi), 4e(ix)
IEC62443: SM-7
NISTCSF: PR.AC-5, PR.DS-7
SCAGILE: Tasks Requiring the Help of Security Experts 11
SCSIC: Vendor Software Delivery Integrity Controls
SP80053: SA-3(1), SA-8, SA-15
SP800161: SA-3, SA-8, SA-15
SP800181: OM-NET-001, SP-SYS-001; T0019, T0023, T0144, T0160, T0262, T0438,
T0484, T0485, T0553; K0001, K0005, K0007, K0033, K0049, K0056, K0061, K0071,
K0104, K0112, K0179, K0326, K0487; S0007, S0084, S0121; A0048

NIST SP 800-218 SSDF VERSION 1.1

9

Practices Tasks Notional Implementation Examples References
from attempted and actual cyber incidents.
Example 8: Configure security controls and other tools involved in separating and
protecting the environments to generate artifacts for their activities.
Example 9: Continuously monitor all software deployed in each environment for
new vulnerabilities, and respond to vulnerabilities appropriately following a risk-
based approach.
Example 10: Configure and implement measures to secure the environments’
hosting infrastructures following a zero trust architecture7.

PO.5.2: Secure and harden development endpoints
(i.e., endpoints for software designers, developers,
testers, builders, etc.) to perform development-related
tasks using a risk-based approach.

Example 1: Configure each development endpoint based on approved hardening
guides, checklists, etc.; for example, enable FIPS-compliant encryption of all
sensitive data at rest and in transit.
Example 2: Configure each development endpoint and the development
resources to provide the least functionality needed by users and services and to
enforce the principle of least privilege.
Example 3: Continuously monitor the security posture of all development
endpoints, including monitoring and auditing all use of privileged access.
Example 4: Configure security controls and other tools involved in securing and
hardening development endpoints to generate artifacts for their activities.
Example 5: Require multi-factor authentication for all access to development
endpoints and development resources.
Example 6: Provide dedicated development endpoints on non-production
networks for performing all development-related tasks. Provide separate
endpoints on production networks for all other tasks.
Example 7: Configure each development endpoint following a zero trust
architecture.

BSAFSS: DE.1-1, IA.1, IA.2
EO14028: 4e(i)(C), 4e(i)(E), 4e(i)(F), 4e(ii), 4e(iii), 4e(v), 4e(vi), 4e(ix)
IEC62443: SM-7
NISTCSF: PR.AC-4, PR.AC-7, PR.IP-1, PR.IP-3, PR.IP-12, PR.PT-1, PR.PT-3, DE.CM
SCAGILE: Tasks Requiring the Help of Security Experts 11
SCSIC: Vendor Software Delivery Integrity Controls
SP80053: SA-15
SP800161: SA-15
SP800181: OM-ADM-001, SP-SYS-001; T0484, T0485, T0489, T0553; K0005, K0007,
K0077, K0088, K0130, K0167, K0205, K0275; S0076, S0097, S0121, S0158; A0155

Protect Software (PS)

Protect All Forms of Code from Unauthorized
Access and Tampering (PS.1): Help prevent
unauthorized changes to code, both inadvertent
and intentional, which could circumvent or
negate the intended security characteristics of
the software. For code that is not intended to be
publicly accessible, this helps prevent theft of
the software and may make it more difficult or
time-consuming for attackers to find
vulnerabilities in the software.

PS.1.1: Store all forms of code – including source
code, executable code, and configuration-as-code –
based on the principle of least privilege so that only
authorized personnel, tools, services, etc. have
access.

Example 1: Store all source code and configuration-as-code in a code repository,
and restrict access to it based on the nature of the code. For example, open-
source code intended for public access may need its integrity and availability
protected; other code may also need its confidentiality protected.
Example 2: Use version control features of the repository to track all changes
made to the code with accountability to the individual account.
Example 3: Use commit signing for code repositories.
Example 4: Have the code owner review and approve all changes made to the
code by others.
Example 5: Use code signing8 to help protect the integrity of executables.
Example 6: Use cryptography (e.g., cryptographic hashes) to help protect file
integrity.

BSAFSS: IA.1, IA.2, SM.4-1, DE.1-2
BSIMM: SE2.4
CNCFSSCP: Securing the Source Code—Verification, Automation, Controlled
Environments, Secure Authentication; Securing Materials—Automation
EO14028: 4e(iii), 4e(iv), 4e(ix)
IDASOAR: Fact Sheet 25
IEC62443: SM-6, SM-7, SM-8
NISTCSF: PR.AC-4, PR.DS-6, PR.IP-3
OWASPASVS: 1.10, 10.3.2
OWASPMASVS: 7.1
OWASPSAMM: OE3-B
PCISSLC: 5.1, 6.1
SCSIC: Vendor Software Delivery Integrity Controls, Vendor Software Development Integrity
Controls
SP80053: SA-10
SP800161: SA-8, SA-10

7 See NIST SP 800-207, Zero Trust Architecture, for additional information (https://doi.org/10.6028/NIST.SP.800-207).
8 For more information on code signing, see NIST Cybersecurity White Paper, Security Considerations for Code Signing (https://doi.org/10.6028/NIST.CSWP.01262018).

NIST SP 800-218 SSDF VERSION 1.1

10

Practices Tasks Notional Implementation Examples References
Provide a Mechanism for Verifying Software
Release Integrity (PS.2): Help software
acquirers ensure that the software they acquire
is legitimate and has not been tampered with.

PS.2.1: Make software integrity verification information
available to software acquirers.

Example 1: Post cryptographic hashes for release files on a well-secured
website.
Example 2: Use an established certificate authority for code signing so that
consumers’ operating systems or other tools and services can confirm the validity
of signatures before use.
Example 3: Periodically review the code signing processes, including certificate
renewal, rotation, revocation, and protection.

BSAFSS: SM.4, SM.5, SM.6
BSIMM: SE2.4
CNCFSSCP: Securing Deployments—Verification
EO14028: 4e(iii), 4e(ix), 4e(x)
IEC62443: SM-6, SM-8, SUM-4
NISTCSF: PR.DS-6
NISTLABEL: 2.2.2.4
OWASPSAMM: OE3-B
OWASPSCVS: 4
PCISSLC: 6.1, 6.2
SCSIC: Vendor Software Delivery Integrity Controls
SP80053: SA-8
SP800161: SA-8
SP800181: K0178

Archive and Protect Each Software Release
(PS.3): Preserve software releases in order to
help identify, analyze, and eliminate
vulnerabilities discovered in the software after
release.

PS.3.1: Securely archive the necessary files and
supporting data (e.g., integrity verification information,
provenance data) to be retained for each software
release.

Example 1: Store the release files, associated images, etc. in repositories
following the organization’s established policy. Allow read-only access to them by
necessary personnel and no access by anyone else.
Example 2: Store and protect release integrity verification information and
provenance data, such as by keeping it in a separate location from the release
files or by signing the data.

BSAFSS: PD.1-5, DE.1-2, IA.2
CNCFSSCP: Securing Artefacts—Automation, Controlled Environments, Encryption;
Securing Deployments—Verification
EO14028: 4e(iii), 4e(vi), 4e(ix), 4e(x)
IDASOAR: 25
IEC62443: SM-6, SM-7
NISTCSF: PR.IP-4
OWASPSCVS: 1, 3.18, 3.19, 6.3
PCISSLC: 5.2, 6.1, 6.2
SCSIC: Vendor Software Delivery Integrity Controls
SP80053: SA-10, SA-15, SA-15(11), SR-4
SP800161: SA-8, SA-10, SA-15(11), SR-4

PS.3.2: Collect, safeguard, maintain, and share
provenance data for all components of each software
release (e.g., in a software bill of materials [SBOM]).

Example 1: Make the provenance data available to software acquirers in
accordance with the organization’s policies, preferably using standards-based
formats.
Example 2: Make the provenance data available to the organization’s operations
and response teams to aid them in mitigating software vulnerabilities.
Example 3: Protect the integrity of provenance data, and provide a way for
recipients to verify provenance data integrity.
Example 4: Update the provenance data every time any of the software’s
components are updated.

BSAFSS: SM.2
BSIMM: SE3.6
CNCFSSCP: Securing Materials—Verification, Automation
EO14028: 4e(vi), 4e(vii), 4e(ix), 4e(x)
NTIASBOM: All
OWASPSCVS: 1.4, 2
SCSIC: Vendor Software Delivery Integrity Controls
SCTPC: MAINTAIN3
SP80053: SA-8, SR-3, SR-4
SP800161: SA-8, SR-3, SR-4

NIST SP 800-218 SSDF VERSION 1.1

11

Practices Tasks Notional Implementation Examples References
Produce Well-Secured Software (PW)

Design Software to Meet Security
Requirements and Mitigate Security Risks
(PW.1): Identify and evaluate the security
requirements for the software; determine what
security risks the software is likely to face during
operation and how the software’s design and
architecture should mitigate those risks; and
justify any cases where risk-based analysis
indicates that security requirements should be
relaxed or waived. Addressing security
requirements and risks during software design
(secure by design) is key for improving software
security and also helps improve development
efficiency.

PW.1.1: Use forms of risk modeling – such as threat
modeling, attack modeling, or attack surface mapping
– to help assess the security risk for the software.

Example 1: Train the development team (security champions, in particular) or
collaborate with a risk modeling expert to create models and analyze how to use
a risk-based approach to communicate the risks and determine how to address
them, including implementing mitigations.
Example 2: Perform more rigorous assessments for high-risk areas, such as
protecting sensitive data and safeguarding identification, authentication, and
access control, including credential management.
Example 3: Review vulnerability reports and statistics for previous software to
inform the security risk assessment.
Example 4: Use data classification methods to identify and characterize each
type of data that the software will interact with.

BSAFSS: SC.1
BSIMM: AM1.2, AM1.3, AM1.5, AM2.1, AM2.2, AM2.5, AM2.6, AM2.7, SFD2.2, AA1.1,
AA1.2, AA1.3, AA2.1
EO14028: 4e(ix)
IDASOAR: 1
IEC62443: SM-4, SR-1, SR-2, SD-1
IR8397: 2.1
ISO27034: 7.3.3
MSSDL: 4
NISTCSF: ID.RA
OWASPASVS: 1.1.2, 1.2, 1.4, 1.6, 1.8, 1.9, 1.11, 2, 3, 4, 6, 8, 9, 11, 12, 13
OWASPMASVS: 1.6, 1.8, 2, 3, 4, 5, 6
OWASPSAMM: TA1-A, TA1-B, TA3-B, DR1-A
PCISSLC: 3.2, 3.3
SCAGILE: Tasks Requiring the Help of Security Experts 3
SCFPSSD: Threat Modeling
SCTTM: Entire guide
SP80053: SA-8, SA-11(2), SA-11(6), SA-15(5)
SP800160: 3.3.4, 3.4.5
SP800161: SA-8, SA-11(2), SA-11(6), SA-15(5)
SP800181: T0038, T0062; K0005, K0009, K0038, K0039, K0070, K0080, K0119, K0147,
K0149, K0151, K0152, K0160, K0161, K0162, K0165, K0297, K0310, K0344, K0362,
K0487, K0624; S0006, S0009, S0022, S0078, S0171, S0229, S0248; A0092, A0093,
A0107

PW.1.2: Track and maintain the software’s security
requirements, risks, and design decisions.

Example 1: Record the response to each risk, including how mitigations are to be
achieved and what the rationales are for any approved exceptions to the security
requirements. Add any mitigations to the software’s security requirements.
Example 2: Maintain records of design decisions, risk responses, and approved
exceptions that can be used for auditing and maintenance purposes throughout
the rest of the software life cycle.
Example 3: Periodically re-evaluate all approved exceptions to the security
requirements, and implement changes as needed.

BSAFSS: SC.1-1, PD.1-1
BSIMM: SFD3.1, SFD3.3, AA2.2, AA3.2
EO14028: 4e(v), 4e(ix)
IEC62443: SD-1
ISO27034: 7.3.3
MSSDL: 4
NISTLABEL: 2.2.2.2
OWASPASVS: 1.1.3, 1.1.4
OWASPMASVS: 1.3, 1.6
OWASPSAMM: DR1-B
PCISSLC: 3.2, 3.3
SP80053: SA-8, SA-10, SA-17
SP800161: SA-8, SA-17
SP800181: T0256; K0005, K0038, K0039, K0147, K0149, K0160, K0161, K0162, K0165,
K0344, K0362, K0487; S0006, S0009, S0078, S0171, S0229, S0248; A0092, A0107

PW.1.3: Where appropriate, build in support for using
standardized security features and services (e.g.,
enabling software to integrate with existing log
management, identity management, access control,
and vulnerability management systems) instead of
creating proprietary implementations of security
features and services. [Formerly PW.4.3]

Example 1: Maintain one or more software repositories of modules for supporting
standardized security features and services.
Example 2: Determine secure configurations for modules for supporting
standardized security features and services, and make these configurations
available (e.g., as configuration-as-code) so developers can readily use them.
Example 3: Define criteria for which security features and services must be
supported by software to be developed.

BSAFSS: SI.2-1, SI.2-2, LO.1
BSIMM: SFD1.1, SFD2.1, SFD3.2, SR1.1, SR3.4
EO14028: 4e(ix)
IEC62443: SD-1, SD-4
MSSDL: 5
OWASPASVS: 1.1.6
OWASPSAMM: SA2-A
SCFPSSD: Standardize Identity and Access Management; Establish Log Requirements and
Audit Practices

NIST SP 800-218 SSDF VERSION 1.1

12

Practices Tasks Notional Implementation Examples References
Review the Software Design to Verify
Compliance with Security Requirements and
Risk Information (PW.2): Help ensure that the
software will meet the security requirements and
satisfactorily address the identified risk
information.

PW.2.1: Have 1) a qualified person (or people) who
were not involved with the design and/or 2) automated
processes instantiated in the toolchain review the
software design to confirm and enforce that it meets all
of the security requirements and satisfactorily
addresses the identified risk information.

Example 1: Review the software design to confirm that it addresses applicable
security requirements.
Example 2: Review the risk models created during software design to determine
if they appear to adequately identify the risks.
Example 3: Review the software design to confirm that it satisfactorily addresses
the risks identified by the risk models.
Example 4: Have the software’s designer correct failures to meet the
requirements.
Example 5: Change the design and/or the risk response strategy if the security
requirements cannot be met.
Example 6: Record the findings of design reviews to serve as artifacts (e.g., in
the software specification, in the issue tracking system, in the threat model).

BSAFSS: TV.3
BSIMM: AA1.1, AA1.2, AA1.3, AA2.1, AA3.1
EO14028: 4e(iv), 4e(v), 4e(ix)
IEC62443: SM-2, SR-2, SR-5, SD-3, SD-4, SI-2
ISO27034: 7.3.3
OWASPASVS: 1.1.5
OWASPSAMM: DR1-A, DR1-B
PCISSLC: 3.2
SP800181: T0328; K0038, K0039, K0070, K0080, K0119, K0152, K0153, K0161, K0165,
K0172, K0297; S0006, S0009, S0022, S0036, S0141, S0171

Verify Third-Party Software Complies with
Security Requirements (PW.3): Moved to
PW.4

PW.3.1: Moved to PO.1.3
PW.3.2: Moved to PW.4.4

Reuse Existing, Well-Secured Software When
Feasible Instead of Duplicating Functionality
(PW.4): Lower the costs of software
development, expedite software development,
and decrease the likelihood of introducing
additional security vulnerabilities into the
software by reusing software modules and
services that have already had their security
posture checked. This is particularly important
for software that implements security
functionality, such as cryptographic modules and
protocols.

PW.4.1: Acquire and maintain well-secured software
components (e.g., software libraries, modules,
middleware, frameworks) from commercial, open-
source, and other third-party developers for use by the
organization’s software.

Example 1: Review and evaluate third-party software components in the context
of their expected use. If a component is to be used in a substantially different way
in the future, perform the review and evaluation again with that new context in
mind.
Example 2: Determine secure configurations for software components, and make
these available (e.g., as configuration-as-code) so developers can readily use the
configurations.
Example 3: Obtain provenance information (e.g., SBOM, source composition
analysis, binary software composition analysis) for each software component, and
analyze that information to better assess the risk that the component may
introduce.
Example 4: Establish one or more software repositories to host sanctioned and
vetted open-source components.
Example 5: Maintain a list of organization-approved commercial software
components and component versions along with their provenance data.
Example 6: Designate which components must be included in software to be
developed.
Example 7: Implement processes to update deployed software components to
newer versions, and retain older versions of software components until all
transitions from those versions have been completed successfully.
Example 8: If the integrity or provenance of acquired binaries cannot be
confirmed, build binaries from source code after verifying the source code’s
integrity and provenance.

BSAFSS: SM.2
BSIMM: SFD2.1, SFD3.2, SR2.4, SR3.1, SE3.6
CNCFSSCP: Securing Materials—Verification
EO14028: 4e(iii), 4e(vi), 4e(ix), 4e(x)
IDASOAR: 19
IEC62443: SM-9, SM-10
MSSDL: 6
NISTCSF: ID.SC-2
OWASPASVS: 1.1.6
OWASPSAMM: SA1-A
OWASPSCVS: 4
SCSIC: Vendor Sourcing Integrity Controls
SCTPC: MAINTAIN
SP80053: SA-4, SA-5, SA-8(3), SA-10(6), SR-3, SR-4
SP800161: SA-4, SA-5, SA-8(3), SA-10(6), SR-3, SR-4
SP800181: K0039

PW.4.2: Create and maintain well-secured software
components in-house following SDLC processes to
meet common internal software development needs
that cannot be better met by third-party software
components.

Example 1: Follow organization-established security practices for secure
software development when creating and maintaining the components.
Example 2: Determine secure configurations for software components, and make
these available (e.g., as configuration-as-code) so developers can readily use the
configurations.
Example 3: Maintain one or more software repositories for these components.
Example 4: Designate which components must be included in software to be
developed.
Example 5: Implement processes to update deployed software components to
newer versions, and maintain older versions of software components until all
transitions from those versions have been completed successfully.

BSIMM: SFD1.1, SFD2.1, SFD3.2, SR1.1
EO14028: 4e(ix)
IDASOAR: 19
OWASPASVS: 1.1.6
SCTPC: MAINTAIN
SP80053: SA-8(3)
SP800161: SA-8(3)
SP800181: SP-DEV-001

PW.4.3: Moved to PW.1.3

NIST SP 800-218 SSDF VERSION 1.1

13

Practices Tasks Notional Implementation Examples References
PW.4.4: Verify that acquired commercial, open-source,
and all other third-party software components comply
with the requirements, as defined by the organization,
throughout their life cycles.

Example 1: Regularly check whether there are publicly known vulnerabilities in
the software modules and services that vendors have not yet fixed.
Example 2: Build into the toolchain automatic detection of known vulnerabilities in
software components.
Example 3: Use existing results from commercial services for vetting the software
modules and services.
Example 4: Ensure that each software component is still actively maintained and
has not reached end of life; this should include new vulnerabilities found in the
software being remediated.
Example 5: Determine a plan of action for each software component that is no
longer being maintained or will not be available in the near future.
Example 6: Confirm the integrity of software components through digital
signatures or other mechanisms.
Example 7: Review, analyze, and/or test code. See PW.7 and PW.8.

BSAFSS: SC.3-1, SM.2-1, SM.2-2, SM.2-3, TV.2, TV.3
BSIMM: CP3.2, SR2.4, SR3.1, SR3.2, SE2.4, SE3.6
CNCFSSCP: Securing Materials—Verification, Automation
EO14028: 4e(iii), 4e(iv), 4e(vi), 4e(ix), 4e(x)
IDASOAR: 21
IEC62443: SI-1, SM-9, SM-10, DM-1
IR8397: 2.11
MSSDL: 7
NISTCSF: ID.SC-4, PR.DS-6
NISTLABEL: 2.2.2.2
OWASPASVS: 10, 14.2
OWASPMASVS: 7.5
OWASPSAMM: TA3-A, SR3-B
OWASPSCVS: 4, 5, 6
PCISSLC: 3.2, 3.4, 4.1
SCAGILE: Tasks Requiring the Help of Security Experts 8
SCFPSSD: Manage Security Risk Inherent in the Use of Third-Party Components
SCSIC: Vendor Sourcing Integrity Controls, Peer Reviews and Security Testing
SCTPC: MAINTAIN, ASSESS
SP80053: SA-9, SR-3, SR-4, SR-4(3), SR-4(4)
SP800160: 3.1.2, 3.3.8
SP800161: SA-4, SA-8, SA-9, SA-9(3), SR-3, SR-4, SR-4(3), SR-4(4)
SP800181: SP-DEV-002; K0153, K0266; S0298

PW.4.5: Moved to PW.4.1 and PW.4.4
Create Source Code by Adhering to Secure
Coding Practices (PW.5): Decrease the
number of security vulnerabilities in the software,
and reduce costs by minimizing vulnerabilities
introduced during source code creation that
meet or exceed organization-defined
vulnerability severity criteria.

PW.5.1: Follow all secure coding practices that are
appropriate to the development languages and
environment to meet the organization’s requirements.

Example 1: Validate all inputs, and validate and properly encode all outputs.
Example 2: Avoid using unsafe functions and calls.
Example 3: Detect errors, and handle them gracefully.
Example 4: Provide logging and tracing capabilities.
Example 5: Use development environments with automated features that
encourage or require the use of secure coding practices with just-in-time training-
in-place.
Example 6: Follow procedures for manually ensuring compliance with secure
coding practices when automated methods are insufficient or unavailable.
Example 7: Use tools (e.g., linters, formatters) to standardize the style and
formatting of the source code.
Example 8: Check for other vulnerabilities that are common to the development
languages and environment.
Example 9: Have the developer review their own human-readable code to
complement (not replace) code review performed by other people or tools. See
PW.7.

BSAFSS: SC.2, SC.3, LO.1, EE.1
BSIMM: SR3.3, CR1.4, CR3.5
EO14028: 4e(iv), 4e(ix)
IDASOAR: 2
IEC62443: SI-1, SI-2
ISO27034: 7.3.5
MSSDL: 9
OWASPASVS: 1.1.7, 1.5, 1.7, 5, 7
OWASPMASVS: 7.6
SCFPSSD: Establish Log Requirements and Audit Practices, Use Code Analysis Tools to
Find Security Issues Early, Handle Data Safely, Handle Errors, Use Safe Functions Only
SP800181: SP-DEV-001; T0013, T0077, T0176; K0009, K0016, K0039, K0070, K0140,
K0624; S0019, S0060, S0149, S0172, S0266; A0036, A0047

PW.5.2: Moved to PW.5.1 as example

NIST SP 800-218 SSDF VERSION 1.1

14

Practices Tasks Notional Implementation Examples References
Configure the Compilation, Interpreter, and
Build Processes to Improve Executable
Security (PW.6): Decrease the number of
security vulnerabilities in the software and
reduce costs by eliminating vulnerabilities before
testing occurs.

PW.6.1: Use compiler, interpreter, and build tools that
offer features to improve executable security.

Example 1: Use up-to-date versions of compiler, interpreter, and build tools.
Example 2: Follow change management processes when deploying or updating
compiler, interpreter, and build tools, and audit all unexpected changes to tools.
Example 3: Regularly validate the authenticity and integrity of compiler,
interpreter, and build tools. See PO.3.

BSAFSS: DE.2-1
BSIMM: SE2.4
CNCFSSCP: Securing Build Pipelines—Verification, Automation
EO14028: 4e(iv), 4e(ix)
IEC62443: SI-2
MSSDL: 8
SCAGILE: Operational Security Task 3
SCFPSSD: Use Current Compiler and Toolchain Versions and Secure Compiler Options
SCSIC: Vendor Software Development Integrity Controls
SP80053: SA-15
SP800161: SA-15

PW.6.2: Determine which compiler, interpreter, and
build tool features should be used and how each
should be configured, then implement and use the
approved configurations.

Example 1: Enable compiler features that produce warnings for poorly secured
code during the compilation process.
Example 2: Implement the “clean build” concept, where all compiler warnings are
treated as errors and eliminated except those determined to be false positives or
irrelevant.
Example 3: Perform all builds in a dedicated, highly controlled build environment.
Example 4: Enable compiler features that randomize or obfuscate execution
characteristics, such as memory location usage, that would otherwise be
predictable and thus potentially exploitable.
Example 5: Test to ensure that the features are working as expected and are not
inadvertently causing any operational issues or other problems.
Example 6: Continuously verify that the approved configurations are being used.
Example 7: Make the approved tool configurations available as configuration-as-
code so developers can readily use them.

BSAFSS: DE.2-3, DE.2-4, DE.2-5
BSIMM: SE2.4, SE3.2
CNCFSSCP: Securing Build Pipelines—Verification, Automation
EO14028: 4e(iv), 4e(ix)
IEC62443: SI-2
IR8397: 2.5
MSSDL: 8
OWASPASVS: 14.1, 14.2.1
OWASPMASVS: 7.2
PCISSLC: 3.2
SCAGILE: Operational Security Task 8
SCFPSSD: Use Current Compiler and Toolchain Versions and Secure Compiler Options
SCSIC: Vendor Software Development Integrity Controls
SP80053: SA-15, SR-9
SP800161: SA-15, SR-9
SP800181: K0039, K0070

Review and/or Analyze Human-Readable
Code to Identify Vulnerabilities and Verify
Compliance with Security Requirements
(PW.7): Help identify vulnerabilities so that they
can be corrected before the software is released
to prevent exploitation. Using automated
methods lowers the effort and resources needed
to detect vulnerabilities. Human-readable code
includes source code, scripts, and any other
form of code that an organization deems human-
readable.

PW.7.1: Determine whether code review (a person
looks directly at the code to find issues) and/or code
analysis (tools are used to find issues in code, either in
a fully automated way or in conjunction with a person)
should be used, as defined by the organization.

Example 1: Follow the organization’s policies or guidelines for when code review
should be performed and how it should be conducted. This may include third-
party code and reusable code modules written in-house.
Example 2: Follow the organization’s policies or guidelines for when code
analysis should be performed and how it should be conducted.
Example 3: Choose code review and/or analysis methods based on the stage of
the software.

BSIMM: CR1.5
EO14028: 4e(iv), 4e(ix)
IEC62443: SM-5, SI-1, SVV-1
NISTLABEL: 2.2.2.2
SCSIC: Peer Reviews and Security Testing
SP80053: SA-11
SP800161: SA-11
SP800181: SP-DEV-002; K0013, K0039, K0070, K0153, K0165; S0174

PW.7.2: Perform the code review and/or code analysis
based on the organization’s secure coding standards,
and record and triage all discovered issues and
recommended remediations in the development
team’s workflow or issue tracking system.

Example 1: Perform peer review of code, and review any existing code review,
analysis, or testing results as part of the peer review.
Example 2: Use expert reviewers to check code for backdoors and other
malicious content.
Example 3: Use peer reviewing tools that facilitate the peer review process, and
document all discussions and other feedback.
Example 4: Use a static analysis tool to automatically check code for
vulnerabilities and compliance with the organization’s secure coding standards
with a human reviewing the issues reported by the tool and remediating them as
necessary.
Example 5: Use review checklists to verify that the code complies with the
requirements.
Example 6: Use automated tools to identify and remediate documented and
verified unsafe software practices on a continuous basis as human-readable code
is checked into the code repository.

BSAFSS: TV.2, PD.1-4
BSIMM: CR1.2, CR1.4, CR1.6, CR2.6, CR2.7, CR3.4, CR3.5
EO14028: 4e(iv), 4e(v), 4e(ix)
IDASOAR: 3, 4, 5, 14, 15, 48
IEC62443: SI-1, SVV-1, SVV-2
IR8397: 2.3, 2.4
ISO27034: 7.3.6
MSSDL: 9, 10
NISTLABEL: 2.2.2.2
OWASPASVS: 1.1.7, 10
OWASPMASVS: 7.5
OWASPSAMM: IR1-B, IR2-A, IR2-B, IR3-A
PCISSLC: 3.2, 4.1
SCAGILE: Operational Security Tasks 4, 7; Tasks Requiring the Help of Security Experts 10

NIST SP 800-218 SSDF VERSION 1.1

15

Practices Tasks Notional Implementation Examples References
Example 7: Identify and document the root causes of discovered issues.
Example 8: Document lessons learned from code review and analysis in a wiki
that developers can access and search.

SCFPSSD: Use Code Analysis Tools to Find Security Issues Early, Use Static Analysis
Security Testing Tools, Perform Manual Verification of Security Features/Mitigations
SCSIC: Peer Reviews and Security Testing
SP80053: SA-11, SA-11(1), SA-11(4), SA-15(7)
SP800161: SA-11, SA-11(1), SA-11(4), SA-15(7)
SP800181: SP-DEV-001, SP-DEV-002; T0013, T0111, T0176, T0267, T0516; K0009,
K0039, K0070, K0140, K0624; S0019, S0060, S0078, S0137, S0149, S0167, S0174,
S0242, S0266; A0007, A0015, A0036, A0044, A0047

Test Executable Code to Identify
Vulnerabilities and Verify Compliance with
Security Requirements (PW.8): Help identify
vulnerabilities so that they can be corrected
before the software is released in order to
prevent exploitation. Using automated methods
lowers the effort and resources needed to detect
vulnerabilities and improves traceability and
repeatability. Executable code includes binaries,
directly executed bytecode and source code,
and any other form of code that an organization
deems executable.

PW.8.1: Determine whether executable code testing
should be performed to find vulnerabilities not
identified by previous reviews, analysis, or testing and,
if so, which types of testing should be used.

Example 1: Follow the organization’s policies or guidelines for when code testing
should be performed and how it should be conducted (e.g., within a sandboxed
environment). This may include third-party executable code and reusable
executable code modules written in-house.
Example 2: Choose testing methods based on the stage of the software.

BSAFSS: TV.3
BSIMM: PT2.3
EO14028: 4e(ix)
IEC62443: SVV-1, SVV-2, SVV-3, SVV-4, SVV-5
NISTLABEL: 2.2.2.2
SCSIC: Peer Reviews and Security Testing
SP80053: SA-11
SP800161: SA-11
SP800181: SP-DEV-001, SP-DEV-002; T0456; K0013, K0039, K0070, K0153, K0165,
K0342, K0367, K0536, K0624; S0001, S0015, S0026, S0061, S0083, S0112, S0135

PW.8.2: Scope the testing, design the tests, perform
the testing, and document the results, including
recording and triaging all discovered issues and
recommended remediations in the development
team’s workflow or issue tracking system.

Example 1: Perform robust functional testing of security features.
Example 2: Integrate dynamic vulnerability testing into the project’s automated
test suite.
Example 3: Incorporate tests for previously reported vulnerabilities into the
project’s test suite to ensure that errors are not reintroduced.
Example 4: Take into consideration the infrastructures and technology stacks
that the software will be used with in production when developing test plans.
Example 5: Use fuzz testing tools to find issues with input handling.
Example 6: If resources are available, use penetration testing to simulate how an
attacker might attempt to compromise the software in high-risk scenarios.
Example 7: Identify and record the root causes of discovered issues.
Example 8: Document lessons learned from code testing in a wiki that
developers can access and search.
Example 9: Use source code, design records, and other resources when
developing test plans.

BSAFSS: TV.3, TV.5, PD.1-4
BSIMM: ST1.1, ST1.3, ST1.4, ST2.4, ST2.5, ST2.6, ST3.3, ST3.4, ST3.5, ST3.6, PT1.1,
PT1.2, PT1.3, PT3.1
EO14028: 4e(iv), 4e(v), 4e(ix)
IDASOAR: 7, 8, 10, 11, 38, 39, 43, 44, 48, 55, 56, 57
IEC62443: SM-5, SM-13, SI-1, SVV-1, SVV-2, SVV-3, SVV-4, SVV-5
IR8397: 2.6, 2.7, 2.8, 2.9, 2.10, 2.11
ISO27034: 7.3.6
MSSDL: 10, 11
NISTLABEL: 2.2.2.2
OWASPMASVS: 7.5
OWASPSAMM: ST1-A, ST1-B, ST2-A, ST2-B, ST3-A
PCISSLC: 4.1
SCAGILE: Operational Security Tasks 10, 11; Tasks Requiring the Help of Security Experts
4, 5, 6, 7
SCFPSSD: Perform Dynamic Analysis Security Testing, Fuzz Parsers, Network
Vulnerability Scanning, Perform Automated Functional Testing of Security
Features/Mitigations, Perform Penetration Testing
SCSIC: Peer Reviews and Security Testing
SP80053: SA-11, SA-11(5), SA-11(8), SA-15(7)
SP800161: SA-11, SA-11(5), SA-11(8), SA-15(7)
SP800181: SP-DEV-001, SP-DEV-002; T0013, T0028, T0169, T0176, T0253, T0266,
T0456, T0516; K0009, K0039, K0070, K0272, K0339, K0342, K0362, K0536, K0624;
S0001, S0015, S0046, S0051, S0078, S0081, S0083, S0135, S0137, S0167, S0242;
A0015

NIST SP 800-218 SSDF VERSION 1.1

16

Practices Tasks Notional Implementation Examples References
Configure Software to Have Secure Settings
by Default (PW.9): Help improve the security of
the software at the time of installation to reduce
the likelihood of the software being deployed
with weak security settings, putting it at greater
risk of compromise.

PW.9.1: Define a secure baseline by determining how
to configure each setting that has an effect on security
or a security-related setting so that the default settings
are secure and do not weaken the security functions
provided by the platform, network infrastructure, or
services.

Example 1: Conduct testing to ensure that the settings, including the default
settings, are working as expected and are not inadvertently causing any security
weaknesses, operational issues, or other problems.

BSAFSS: CF.1
BSIMM: SE2.2
EO14028: 4e(iv), 4e(ix)
IDASOAR: 23
IEC62443: SD-4, SVV-1, SG-1
ISO27034: 7.3.5
SCAGILE: Tasks Requiring the Help of Security Experts 12
SCSIC: Vendor Software Delivery Integrity Controls, Vendor Software Development Integrity
Controls
SP800181: SP-DEV-002; K0009, K0039, K0073, K0153, K0165, K0275, K0531; S0167

PW.9.2: Implement the default settings (or groups of
default settings, if applicable), and document each
setting for software administrators.

Example 1: Verify that the approved configuration is in place for the software.
Example 2: Document each setting’s purpose, options, default value, security
relevance, potential operational impact, and relationships with other settings.
Example 3: Use authoritative programmatic technical mechanisms to record how
each setting can be implemented and assessed by software administrators.
Example 4: Store the default configuration in a usable format and follow change
control practices for modifying it (e.g., configuration-as-code).

BSAFSS: CF.1
BSIMM: SE2.2
EO14028: 4e(iv), 4e(ix)
IDASOAR: 23
IEC62443: SG-3
OWASPSAMM: OE1-A
PCISSLC: 8.1, 8.2
SCAGILE: Tasks Requiring the Help of Security Experts 12
SCFPSSD: Verify Secure Configurations and Use of Platform Mitigation
SCSIC: Vendor Software Delivery Integrity Controls, Vendor Software Development Integrity
Controls
SP80053: SA-5, SA-8(23)
SP800161: SA-5, SA-8(23)
SP800181: SP-DEV-001; K0009, K0039, K0073, K0153, K0165, K0275, K0531

Respond to Vulnerabilities (RV)
Identify and Confirm Vulnerabilities on an
Ongoing Basis (RV.1): Help ensure that
vulnerabilities are identified more quickly so that
they can be remediated more quickly in
accordance with risk, reducing the window of
opportunity for attackers.

RV.1.1: Gather information from software acquirers,
users, and public sources on potential vulnerabilities in
the software and third-party components that the
software uses, and investigate all credible reports.

Example 1: Monitor vulnerability databases9, security mailing lists, and other
sources of vulnerability reports through manual or automated means.
Example 2: Use threat intelligence sources to better understand how
vulnerabilities in general are being exploited.
Example 3: Automatically review provenance and software composition data for
all software components to identify any new vulnerabilities they have.

BSAFSS: VM.1-3, VM.3
BSIMM: AM1.5, CMVM1.2, CMVM2.1, CMVM3.4, CMVM3.7
CNCFSSCP: Securing Materials—Verification
EO14028: 4e(iv), 4e(vi), 4e(viii), 4e(ix)
IEC62443: DM-1, DM-2, DM-3
ISO29147: 6.2.1, 6.2.2, 6.2.4, 6.3, 6.5
ISO30111: 7.1.3
OWASPSAMM: IM1-A, IM2-B, EH1-B
OWASPSCVS: 4
PCISSLC: 3.4, 4.1, 9.1
SCAGILE: Operational Security Task 5
SCFPSSD: Vulnerability Response and Disclosure
SCTPC: MONITOR1
SP80053: SA-10, SR-3, SR-4
SP800161: SA-10, SR-3, SR-4
SP800181: K0009, K0038, K0040, K0070, K0161, K0362; S0078

RV.1.2: Review, analyze, and/or test the software’s
code to identify or confirm the presence of previously
undetected vulnerabilities.

Example 1: Configure the toolchain to perform automated code analysis and
testing on a regular or continuous basis for all supported releases.
Example 2: See PW.7 and PW.8.

BSAFSS: VM.1-2, VM.2-1
BSIMM: CMVM3.1
EO14028: 4e(iv), 4e(vi), 4e(viii), 4e(ix)
IEC62443: SI-1, SVV-2, SVV-3, SVV-4, DM-1, DM-2
ISO27034: 7.3.6

9 An example is the National Vulnerability Database (NVD) (https://nvd.nist.gov/).

NIST SP 800-218 SSDF VERSION 1.1

17

Practices Tasks Notional Implementation Examples References
ISO29147: 6.4
ISO30111: 7.1.4
PCISSLC: 3.4, 4.1
SCAGILE: Operational Security Tasks 10, 11
SP80053: SA-11
SP800161: SA-11
SP800181: SP-DEV-002; K0009, K0039, K0153

RV.1.3: Have a policy that addresses vulnerability
disclosure and remediation, and implement the roles,
responsibilities, and processes needed to support that
policy.

Example 1: Establish a vulnerability disclosure program, and make it easy for
security researchers to learn about your program and report possible
vulnerabilities.
Example 2: Have a Product Security Incident Response Team (PSIRT) and
processes in place to handle the responses to vulnerability reports and incidents,
including communications plans for all stakeholders.
Example 3: Have a security response playbook to handle a generic reported
vulnerability, a report of zero-days, a vulnerability being exploited in the wild, and
a major ongoing incident involving multiple parties and open-source software
components.
Example 4: Periodically conduct exercises of the product security incident
response processes.

BSAFSS: VM.1-1, VM.2
BSIMM: CMVM1.1, CMVM2.1, CMVM3.3, CMVM3.7
EO14028: 4e(viii), 4e(ix)
IEC62443: DM-1, DM-2, DM-3, DM-4, DM-5
ISO29147: All
ISO30111: All
MSSDL: 12
NISTLABEL: 2.2.2.3
OWASPMASVS: 1.11
OWASPSAMM: IM1-A, IM1-B, IM2-A, IM2-B
PCISSLC: 9.2, 9.3
SCFPSSD: Vulnerability Response and Disclosure
SP80053: SA-15(10)
SP800160: 3.3.8
SP800161: SA-15(10)
SP800181: K0041, K0042, K0151, K0292, K0317; S0054; A0025
SP800216: All

Assess, Prioritize, and Remediate
Vulnerabilities (RV.2): Help ensure that
vulnerabilities are remediated in accordance with
risk to reduce the window of opportunity for
attackers.

RV.2.1: Analyze each vulnerability to gather sufficient
information about risk to plan its remediation or other
risk response.

Example 1: Use existing issue tracking software to record each vulnerability.
Example 2: Perform risk calculations for each vulnerability based on estimates of
its exploitability, the potential impact if exploited, and any other relevant
characteristics.

BSAFSS: VM.2
BSIMM: CMVM1.2, CMVM2.2
EO14028: 4e(iv), 4e(viii), 4e(ix)
IEC62443: DM-2, DM-3
ISO30111: 7.1.4
NISTLABEL: 2.2.2.2
PCISSLC: 3.4, 4.2
SCAGILE: Operational Security Task 1, Tasks Requiring the Help of Security Experts 10
SP80053: SA-10, SA-15(7)
SP800160: 3.3.8
SP800161: SA-15(7)
SP800181: K0009, K0039, K0070, K0161, K0165; S0078

NIST SP 800-218 SSDF VERSION 1.1

18

Practices Tasks Notional Implementation Examples References
RV.2.2: Plan and implement risk responses for
vulnerabilities.

Example 1: Make a risk-based decision as to whether each vulnerability will be
remediated or if the risk will be addressed through other means (e.g., risk
acceptance, risk transference), and prioritize any actions to be taken.
Example 2: If a permanent mitigation for a vulnerability is not yet available,
determine how the vulnerability can be temporarily mitigated until the permanent
solution is available, and add that temporary remediation to the plan.
Example 3: Develop and release security advisories that provide the necessary
information to software acquirers, including descriptions of what the vulnerabilities
are, how to find instances of the vulnerable software, and how to address them
(e.g., where to get patches and what the patches change in the software; what
configuration settings may need to be changed; how temporary workarounds
could be implemented).
Example 4: Deliver remediations to acquirers via an automated and trusted
delivery mechanism. A single remediation could address multiple vulnerabilities.
Example 5: Update records of design decisions, risk responses, and approved
exceptions as needed. See PW.1.2.

BSAFSS: VM.1-1, VM-2
BSIMM: CMVM2.1
EO14028: 4e(iv), 4e(vi), 4e(viii), 4e(ix)
IEC62443: DM-4
ISO30111: 7.1.4, 7.1.5
NISTLABEL: 2.2.2.2
PCISSLC: 4.1, 4.2, 10.1
SCAGILE: Operational Security Task 2
SCFPSSD: Fix the Vulnerability, Identify Mitigating Factors or Workarounds
SCTPC: MITIGATE
SP80053: SA-5, SA-10, SA-11, SA-15(7)
SP800160: 3.3.8
SP800161: SA-5, SA-8, SA-10, SA-11, SA-15(7)
SP800181: T0163, T0229, T0264; K0009, K0070

Analyze Vulnerabilities to Identify Their Root
Causes (RV.3): Help reduce the frequency of
vulnerabilities in the future.

RV.3.1: Analyze identified vulnerabilities to determine
their root causes.

Example 1: Record the root cause of discovered issues.
Example 2: Record lessons learned through root cause analysis in a wiki that
developers can access and search.

BSAFSS: VM.2-1
BSIMM: CMVM3.1, CMVM3.2
EO14028: 4e(ix)
IEC62443: DM-3
ISO30111: 7.1.4
OWASPSAMM: IM3-A
PCISSLC: 4.2
SCFPSSD: Secure Development Lifecycle Feedback
SP800181: T0047, K0009, K0039, K0070, K0343

RV.3.2: Analyze the root causes over time to identify
patterns, such as a particular secure coding practice
not being followed consistently.

Example 1: Record lessons learned through root cause analysis in a wiki that
developers can access and search.
Example 2: Add mechanisms to the toolchain to automatically detect future
instances of the root cause.
Example 3: Update manual processes to detect future instances of the root
cause.

BSAFSS: VM.2-1, PD.1-3
BSIMM: CP3.3, CMVM3.2
EO14028: 4e(ix)
IEC62443: DM-4
ISO30111: 7.1.7
OWASPSAMM: IM3-B
PCISSLC: 2.6, 4.2
SCFPSSD: Secure Development Lifecycle Feedback
SP800160: 3.3.8
SP800181: T0111, K0009, K0039, K0070, K0343

RV.3.3: Review the software for similar vulnerabilities
to eradicate a class of vulnerabilities, and proactively
fix them rather than waiting for external reports.

Example 1: See PW.7 and PW.8. BSAFSS: VM.2
BSIMM: CR3.3, CMVM3.1
EO14028: 4e(iv), 4e(viii), 4e(ix)
IEC62443: SI-1, DM-3, DM-4
ISO30111: 7.1.4
PCISSLC: 4.2
SP80053: SA-11
SP800161: SA-11
SP800181: SP-DEV-001, SP-DEV-002; K0009, K0039, K0070

RV.3.4: Review the SDLC process, and update it if
appropriate to prevent (or reduce the likelihood of) the
root cause recurring in updates to the software or in
new software that is created.

Example 1: Record lessons learned through root cause analysis in a wiki that
developers can access and search.
Example 2: Plan and implement changes to the appropriate SDLC practices.

BSAFSS: PD.1-3
BSIMM: CP3.3, CMVM3.2
EO14028: 4e(ix)
IEC62443: DM-6
ISO30111: 7.1.7
MSSDL: 2

NIST SP 800-218 SSDF VERSION 1.1

19

Practices Tasks Notional Implementation Examples References
PCISSLC: 2.6, 4.2
SCFPSSD: Secure Development Lifecycle Feedback
SP80053: SA-15
SP800161: SA-15
SP800181: K0009, K0039, K0070

NIST SP 800-218 SSDF VERSION 1.1

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

References

[BSAFSS] BSA (2020) The BSA Framework for Secure Software: A New Approach to
Securing the Software Lifecycle, Version 1.1. Available at
https://www.bsa.org/files/reports/bsa_framework_secure_software_update
_2020.pdf

[BSIMM] Migues S, Erlikhman E, Ewers J, Nassery K (2021) BSIMM12 2021
Foundations Report. Available at
https://www.bsimm.com/content/dam/bsimm/reports/bsimm12-
foundations.pdf

[CNCFSSCP] Cloud Native Computing Foundation (2021) Software Supply Chain Best
Practices. Available at https://github.com/cncf/tag-
security/tree/main/supply-chain-security/supply-chain-security-paper

[EO14028] Executive Order 14028 (2021) Improving the Nation’s Cybersecurity. (The
White House, Washington, DC), DCPD-202100401, May 12, 2021.
https://www.govinfo.gov/app/details/DCPD-202100401

[IDASOAR] Hong Fong EK, Wheeler D, Henninger A (2016) State-of-the-Art
Resources (SOAR) for Software Vulnerability Detection, Test, and
Evaluation 2016. (Institute for Defense Analyses [IDA], Alexandria, VA),
IDA Paper P-8005. Available at https://www.ida.org/research-and-
publications/publications/all/s/st/stateoftheart-resources-soar-for-software-
vulnerability-detection-test-and-evaluation-2016

[IEC62443] International Electrotechnical Commission (IEC), Security for industrial
automation and control systems – Part 4-1: Secure product development
lifecycle requirements, IEC 62443-4-1, 2018. Available at
https://webstore.iec.ch/publication/33615

[IR7692] Waltermire DA, Scarfone KA, Casipe M (2011) Specification for the Open
Checklist Interactive Language (OCIL) Version 2.0. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Interagency or
Internal Report (IR) 7692. https://doi.org/10.6028/NIST.IR.7692

[IR7864] LeMay E, Scarfone KA, Mell PM (2012) The Common Misuse Scoring
System (CMSS): Metrics for Software Feature Misuse Vulnerabilities.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST
Interagency or Internal Report (IR) 7864.
https://doi.org/10.6028/NIST.IR.7864

[IR8397] Black P, Guttman B, Okun V (2021) Guidelines on Minimum Standards
for Developer Verification of Software. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Interagency or Internal Report
(IR) 8397. https://doi.org/10.6028/NIST.IR.8397

NIST SP 800-218 SSDF VERSION 1.1

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

[ISO27034] International Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC), Information technology – Security
techniques – Application security – Part 1: Overview and concepts,
ISO/IEC 27034-1:2011, 2011. Available at
https://www.iso.org/standard/44378.html

[ISO29147] International Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC), Information technology – Security
techniques – Vulnerability disclosure, ISO/IEC 29147:2018, 2018.
Available at https://www.iso.org/standard/72311.html

[ISO30111] International Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC), Information technology – Security
techniques – Vulnerability handling processes, ISO/IEC 30111:2019, 2019.
Available at https://www.iso.org/standard/69725.html

[MSSDL] Microsoft (2021) Security Development Lifecycle. Available at
https://www.microsoft.com/en-us/securityengineering/sdl/

[NISTCSF] National Institute of Standards and Technology (2018) Framework for
Improving Critical Infrastructure Cybersecurity, Version 1.1. (National
Institute of Standards and Technology, Gaithersburg, MD).
https://doi.org/10.6028/NIST.CSWP.04162018

[NISTLABEL] Ogata M, Haney J, Merkel W, Phelps A (2022) Recommended Criteria for
Cybersecurity Labeling of Consumer Software. (National Institute of
Standards and Technology, Gaithersburg, MD). Available at
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity

[NTIASBOM] National Telecommunications and Information Administration (NTIA)
(2021) The Minimum Elements For a Software Bill of Materials (SBOM).
Available at https://www.ntia.doc.gov/report/2021/minimum-elements-
software-bill-materials-sbom

[OWASPASVS] Open Web Application Security Project (2021) OWASP Application
Security Verification Standard 4.0.3. Available at
https://github.com/OWASP/ASVS

[OWASPMASVS] Open Web Application Security Project (2021) OWASP Mobile
Application Security Verification Standard, Version 1.4.2. Available at
https://github.com/OWASP/owasp-masvs/releases

[OWASPSAMM] Open Web Application Security Project (2017) Software Assurance
Maturity Model Version 1.5. Available at
https://www.owasp.org/index.php/OWASP_SAMM_Project

[OWASPSCVS] Open Web Application Security Project (2020) OWASP Software
Component Verification Standard, Version 1.0. Available at
https://github.com/OWASP/Software-Component-Verification-Standard

NIST SP 800-218 SSDF VERSION 1.1

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

[PCISSLC] Payment Card Industry (PCI) Security Standards Council (2021) Secure
Software Lifecycle (Secure SLC) Requirements and Assessment Procedures
Version 1.1. Available at
https://www.pcisecuritystandards.org/document_library?category=sware_s
ec#results

[SCAGILE] Software Assurance Forum for Excellence in Code (2012) Practical
Security Stories and Security Tasks for Agile Development Environments.
Available at
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712
.pdf

[SCFPSSD] Software Assurance Forum for Excellence in Code (2018) Fundamental
Practices for Secure Software Development: Essential Elements of a
Secure Development Lifecycle Program, Third Edition. Available at
https://safecode.org/wp-
content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_
Software_Development_March_2018.pdf

[SCSIC] Software Assurance Forum for Excellence in Code (2010) Software
Integrity Controls: An Assurance-Based Approach to Minimizing Risks in
the Software Supply Chain. Available at
http://www.safecode.org/publication/SAFECode_Software_Integrity_Cont
rols0610.pdf

[SCTPC] Software Assurance Forum for Excellence in Code (2017) Managing
Security Risks Inherent in the Use of Third-Party Components. Available
at https://www.safecode.org/wp-
content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf

[SCTTM] Software Assurance Forum for Excellence in Code (2017) Tactical Threat
Modeling. Available at https://www.safecode.org/wp-
content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf

[SP80053] Joint Task Force (2020) Security and Privacy Controls for Information
Systems and Organizations. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-53,
Rev. 5. Includes updates as of December 10, 2020.
https://doi.org/10.6028/NIST.SP.800-53r5

[SP800160] Ross R, McEvilley M, Oren J (2016) Systems Security Engineering:
Considerations for a Multidisciplinary Approach in the Engineering of
Trustworthy Secure Systems. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-160,
Volume 1. Includes updates as of March 21, 2018.
https://doi.org/10.6028/NIST.SP.800-160v1

NIST SP 800-218 SSDF VERSION 1.1

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

[SP800161] Boyens J, Smith A, Bartol N, Winkler K, Holbrook A, Fallon M (2021)
Cybersecurity Supply Chain Risk Management Practices for Systems and
Organizations. (National Institute of Standards and Technology,
Gaithersburg, MD), Second Draft NIST Special Publication (SP) 800-161,
Rev. 1. https://doi.org/10.6028/NIST.SP.800-161r1-draft2

[SP800181] Newhouse W, Keith S, Scribner B, Witte G (2017) National Initiative for
Cybersecurity Education (NICE) Cybersecurity Workforce Framework.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-181. https://doi.org/10.6028/NIST.SP.800-
181

[SP800216] Schaffer K, Mell P, Trinh H (2021) Recommendations for Federal
Vulnerability Disclosure Guidelines. (National Institute of Standards and
Technology, Gaithersburg, MD), Draft NIST Special Publication (SP) 800-
216. https://doi.org/10.6028/NIST.SP.800-216-draft

NIST SP 800-218 SSDF VERSION 1.1

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

The SSDF and Executive Order 14028

The President’s Executive Order (EO) on “Improving the Nation’s Cybersecurity (14028)”
issued on May 12, 2021 [EO14028], charged multiple agencies – including NIST – with
enhancing cybersecurity through a variety of initiatives related to the security and integrity of the
software supply chain.

Section 4 of the EO directed NIST to solicit input from the private sector, academia, government
agencies, and others and to identify existing or develop new standards, tools, best practices, and
other guidelines to enhance software supply chain security. Table 2 maps the subsections from
Section 4e of the EO to SSDF practices and tasks that can help address each subsection as part of
a risk-based approach.

Table 2: SSDF Practices Corresponding to EO 14028 Subsections

EO 14028
Subsection

SSDF Practices and Tasks

4e(i)(A) PO.5.1
4e(i)(B) PO.5.1
4e(i)(C) PO.5.1, PO.5.2
4e(i)(D) PO.5.1
4e(i)(E) PO.5.2
4e(i)(F) PO.3.2, PO.3.3, PO.5.1, PO.5.2
4e(ii) PO.3.2, PO.3.3, PO.5.1, PO.5.2
4e(iii) PO.3.1, PO.3.2, PO.5.1, PO.5.2, PS.1.1, PS.2.1, PS.3.1, PW.4.1, PW.4.4
4e(iv) PO.4.1, PO.4.2, PS.1.1, PW.2.1, PW.4.4, PW.5.1, PW.6.1, PW.6.2, PW.7.1, PW.7.2, PW.8.2,

PW.9.1, PW.9.2, RV.1.1, RV.1.2, RV.2.1, RV.2.2, RV.3.3
4e(v) PO.3.2, PO.3.3, PO.4.1, PO.4.2, PO.5.1, PO.5.2, PW.1.2, PW.2.1, PW.7.2, PW.8.2, RV.2.2
4e(vi) PO.1.3, PO.3.2, PO.5.1, PO.5.2, PS.3.1, PS.3.2, PW.4.1, PW.4.4, RV.1.1, RV.1.2
4e(vii) PS.3.2
4e(viii) RV.1.1, RV.1.2, RV.1.3, RV.2.1, RV.2.2, RV.3.3
4e(ix) All practices and tasks consistent with a risk-based approach
4e(x) PS.2.1, PS.3.1, PS.3.2, PW.4.1, PW.4.4

To coincide with the release of this document, NIST has also published guidance on how
software producers and acquirers can communicate with each other regarding attestation of
conformance with EO 14028 Section 4e.

NIST SP 800-218 SSDF VERSION 1.1

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

Acronyms

Selected acronyms and abbreviations used in this document are defined below.

BSIMM Building Security In Maturity Model
CISQ Consortium for Information & Software Quality
CNCF Cloud Native Computing Foundation
COTS Commercial-Off-the-Shelf
CPS Cyber-Physical System
DevOps Development and Operations
EO Executive Order
GOTS Government-Off-the-Shelf
GSA General Services Administration
ICS Industrial Control System
IDA Institute for Defense Analyses
IEC International Electrotechnical Commission
IoT Internet of Things
IR Interagency or Internal Report
ISO International Organization for Standardization
ISPAB Information Security and Privacy Advisory Board
IT Information Technology
ITL Information Technology Laboratory
KPI Key Performance Indicator
KRI Key Risk Indicator
MITA Medical Imaging & Technology Alliance
NAVSEA Naval Sea Systems Command
NICE National Initiative for Cybersecurity Education
NIST National Institute of Standards and Technology
NTIA National Telecommunications and Information Administration
OLIR National Online Informative References Program
OWASP Open Web Application Security Project
PCI Payment Card Industry
PSIRT Product Security Incident Response Team
SAFECode Software Assurance Forum for Excellence in Code
SAMM Software Assurance Maturity Model
SBOM Software Bill of Materials
SDL [Microsoft] Security Development Lifecycle
SDLC Software Development Life Cycle
SEI Software Engineering Institute
SLC Software Lifecycle

NIST SP 800-218 SSDF VERSION 1.1

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

SOAR State-of-the-Art Resources
SSDF Secure Software Development Framework

NIST SP 800-218 SSDF VERSION 1.1

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-218

Change Log

This appendix summarizes the most noteworthy changes made to the SSDF since the original
SSDF published in April 2020.
This version (published February 2022)

• Tasks
o Deleted PW.4.5 (merged into PW.4.4)

• Notional Implementation Examples
o Added numerous examples suggested via public comments
o Added “Example X” to the beginning of each notional informative example

• References
o Added EO14028, NISTLABEL, SP800161, SP800216
o Updated BSIMM, OWASPASVS, OWASPMASVS
o Updated NISTDVS to IR8397

• Editorial
o Made minor wording changes throughout the document
o Added definitions of “provenance,” “artifact,” and “evidence”

Draft published September 2021

• Practices
o Added PO.5
o Deleted PW.3 (merged into PW.4)

• Tasks
o Added PO.1.2, PO.5.1, PO.5.2, PS.3.2, PW.1.2
o Moved PW.3.1 to PO.1.3; moved PW.3.2 to PW.4.5; moved PW.4.3 to PW.1.3
o Demoted PW.5.2 to a PW.5.1 example

• References
o Added CNCFSSCP, IEC62443, ISO29147, ISO30111, NISTDVS,

OWASPMASVS, OWASPSCVS
o Updated BSAFSS, BSIMM, OWASPASVS, PCISSLC
o Deleted OWASPTEST

• SSDF Table Conventions
o Retired identifiers for deleted/moved practices and tasks (PW.3, PW.3.1, PW.3.2,

PW.4.3, and PW.5.2)
o Added colored borders and shaded rows for each group of practices; indicated

retired practices and tasks by a lack of shading
• Converted the content from a white paper to a Special Publication 800-series document
• Added Appendix A

	NIST SP 800-218, Secure Software Development Framework (SSDF) Version 1.1: Recommendations for Mitigatingthe Risk of Software Vulnerabilities
	Executive Summary
	Note to Readers
	1 Introduction
	2 The Secure Software Development Framework
	Prepare the Organization (PO)
	Protect Software (PS)
	Produce Well-Secured Software (PW)
	Respond to Vulnerabilities (RV)

	References
	Appendix A— The SSDF and Executive Order 14028
	Appendix B— Acronyms
	Appendix C— Change Log

